Тирозин
Тирозин | |
---|---|
Общие | |
Систематическое наименование | 2-амино-3-(4- гидроксифенил) пропановая кислота |
Сокращения | Тир, Tyr, Y UAU,UAC |
Хим. формула | C₉H₁₁NO₃ |
Рац. формула | C9H11NO3 |
Физические свойства | |
Молярная масса | 181,19 г/моль |
Плотность | 1,456 г/см³ |
Термические свойства | |
Т. плав. | 343 °C |
Химические свойства | |
pKa | 2,24 9,04 10,10 |
Классификация | |
Рег. номер CAS | [60-18-4] |
PubChem | 6057 |
Рег. номер EINECS | 200—460-4 |
SMILES | C1=CC(=CC=C1CC(C(=O)O)N)O |
InChI | 1S/C9H11NO3/c10-8(9(12)13)5-6-1-3-7(11)4-2-6/h1-4,8,11H,5,10H2,(H,12,13)/t8-/m0/s1 OUYCCCASQSFEME-QMMMGPOBSA-N |
ChEBI | 17895 и 46161 |
ChemSpider | 5833 |
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного. |
Тирози́н (α-амино-β-(п-гидроксифенил)пропионовая кислота, сокр.: Тир, Tyr, Y) — ароматическая альфа-аминокислота. Существует в двух оптически изомерных формах — L и D и в виде рацемата (DL). По строению соединение отличается от фенилаланина наличием фенольной гидроксильной группы в пара-положении бензольного кольца. Известны менее важные с биологической точки зрения мета- и орто- изомеры тирозина.
L-тирозин является протеиногенной аминокислотой и входит в состав белков всех известных живых организмов. Тирозин входит в состав ферментов, во многих из которых именно тирозину отведена ключевая роль в ферментативной активности и её регуляции. Местом атаки фосфорилирующих ферментов протеинкиназ часто является именно фенольный гидроксил остатков тирозина. Остаток тирозина в составе белков может подвергаться и другим посттрансляционным модификациям. В некоторых белках (резилин насекомых) присутствуют молекулярные сшивки, возникающие в результате посттрансляционной окислительной конденсации остатков тирозина с образованием дитирозина и тритирозина.
Окрашивание в результате ксантопротеиновой качественной реакции на белки определяется преимущественно нитрованием остатков тирозина (нитруются также остатки фенилаланина, триптофана, и гистидина).
Содержание
1 Биосинтез
2 Катаболизм
3 Применение
4 См. также
5 Литература
Биосинтез |
В процессе биосинтеза тирозина промежуточными соединениями являются шикимат, хоризмат, префенат. Из центральных метаболитов тирозин в природе синтезируют микроорганизмы, грибы и растения. Животные не синтезируют тирозин de novo, но способны гидроксилировать незаменимую аминокислоту фенилаланин в тирозин. Более подробно биосинтез тирозина рассмотрен в статье шикиматный путь.
Тирозин относят к заменимым для большинства животных и человека аминокислотам, так как в организме эта аминокислота образуется из другой (незаменимой) аминокислоты — фенилаланина.
Катаболизм |
В организм животных и человека тирозин поступает с пищей. Также тирозин образуется из фенилаланина (реакция протекает в печени под действием фермента фенилаланин-4-гидроксилазы). Превращение фенилаланина в тирозин в организме в большей степени необходимо для удаления избытка фенилаланина, а не для восстановления запасов тирозина, так как тирозин обычно в достаточном количестве поступает с белками пищи, и его дефицита, как правило, не возникает. Избыток тирозина утилизируется. Тирозин путём переаминирования с α-кетоглутаровой кислотой превращается в 4-гидроксифенилпируват, который далее окисляется (с одновременной миграцией и декарбоксилированием кетокарбоксиэтильного заместителя) в гомогентизат. Гомогентизат через стадии образования 4-малеилацетоацетата и 4-фумарилацетоацетата распадается до фумарата и ацетоацетата. Окончательное разрушение происходит в цикле Кребса.
Таким образом, у животных и человека тирозин распадаются до фумарата (превращается в оксалоацетат, являющийся субстратом глюконеогенеза) и ацетоацетата (повышает уровень кетоновых тел в крови), поэтому тирозин, а также превращающийся в него фенилаланин, по характеру катаболизма у животных относят к глюко-кетогенным (смешанным) аминокислотам (см. классификацию аминокислот).
В природе известны и другие пути биодеградации тирозина.
Из тирозина синтезируются такие биологически активные вещества, как ДОФА, тиреоидных гормонов (тироксин, трийодтиронин). ДОФА является предшественником катехоламинов (дофамин, адреналин, норадреналин) и пигмента меланина. Гомогентизат является предшественником токоферолов, пластохинона (у организмов, способных синтезировать эти соединения).
С обменом тирозина связаны некоторые известные наследственные заболевания. При наследственном заболевании фенилкетонурии превращение фенилаланина в тирозин нарушено, и в организме происходит накопление фенилаланина и его метаболитов (фенилпируват, фениллактат, фенилацетат, орто-гидроксифенилацетат, фенилацетилглутамин), избыточное количество которых отрицательно сказывается на развитии нервной системы. При другом известном наследственном заболевании — алкаптонурии — нарушено превращение гомогентизата в 4-малеилацетоацетат.
Известно также несколько относительно редких заболеваний (тирозинемии), вызванных нарушениями обмена тирозина.
Лечение этих заболеваний, как и фенилкетонурии — диетическое ограничение белка.
Применение |
Тирозин подавляет аппетит, способствует уменьшению отложения жиров, способствует выработке меланина и улучшает функции надпочечников, щитовидной железы и гипофиза.[источник не указан 2990 дней]
См. также |
- Тирозинемия
Литература |
- Report of Medical Research Council on the Dietary Management of PKU. Recommendations on the Dietary Management of PKU. Arch. Dis. Child. 1993: 68; 426-7.
- Dixon M., MacDonald A, White F. Disorders of Amino Acid Metabolism, Organic Acidemias and Urea Cycle Defects PKU in Lawson M, Shaw V (eds.). Clinical Paediatric Dietetics. Oxford:Blackwell Science, 2001,p233-294.
- Holme E, Linstedt S. Tyrosinemia Type I adn NTBC (2-(2-nitro-4-triflourom othylbenoyl)-1,3-cyclohexanedione). J. Inherit. Metab. Dis. 1998:21;507-517.
- Ellaway CJ., Holme E, Standing S. et al. Outcome of Tyrosinemia Type III. J. Inherit. Metab. Dis 2001:24;824-32.
Это заготовка статьи об органическом веществе. Вы можете помочь проекту, дополнив её. |