If any two items in a list is equal to a given number
up vote
7
down vote
favorite
I just subscribed to the daily coding problems and received my first today.
The problem is:
Given a list of numbers and a number k, return whether any two numbers from the list add up to k. For example, given [10, 15, 3, 7] and k of 17, return true since 10 + 7 is 17.
This is what I came up with:
def anyequalto(x, y):
for i in x:
if y - i in x:
return True
anyequalto([10, 15, 3, 7], 17)
I was wondering if anyone had any notes or alternatives as I'm very new to Python and programming.
python
New contributor
|
show 1 more comment
up vote
7
down vote
favorite
I just subscribed to the daily coding problems and received my first today.
The problem is:
Given a list of numbers and a number k, return whether any two numbers from the list add up to k. For example, given [10, 15, 3, 7] and k of 17, return true since 10 + 7 is 17.
This is what I came up with:
def anyequalto(x, y):
for i in x:
if y - i in x:
return True
anyequalto([10, 15, 3, 7], 17)
I was wondering if anyone had any notes or alternatives as I'm very new to Python and programming.
python
New contributor
Your revised code is actually less efficient. There is no point in creating a new list each time.
– Solomon Ucko
9 hours ago
This puzzle must be making the rounds, because someone posted it on this site a few days ago: codereview.stackexchange.com/questions/208138/…
– Eric Lippert
7 hours ago
4
Please do not add new code to your question. Your new code has a few aspects that deserve to be reviewed. You can do so in a different follow-up question. Please refer to the rules for that.
– Josay
7 hours ago
1
Your revised code doesn't work correctly with duplicate values. contains_pair_totalling([5, 5], 10) returns false. Sets don't contain duplicates, so your remove call breaks this case.
– jaxad0127
7 hours ago
1
The original code didn’t work with the sum double any list value, either.anyequalto([5], 10)
returnsTrue
!
– AJNeufeld
7 hours ago
|
show 1 more comment
up vote
7
down vote
favorite
up vote
7
down vote
favorite
I just subscribed to the daily coding problems and received my first today.
The problem is:
Given a list of numbers and a number k, return whether any two numbers from the list add up to k. For example, given [10, 15, 3, 7] and k of 17, return true since 10 + 7 is 17.
This is what I came up with:
def anyequalto(x, y):
for i in x:
if y - i in x:
return True
anyequalto([10, 15, 3, 7], 17)
I was wondering if anyone had any notes or alternatives as I'm very new to Python and programming.
python
New contributor
I just subscribed to the daily coding problems and received my first today.
The problem is:
Given a list of numbers and a number k, return whether any two numbers from the list add up to k. For example, given [10, 15, 3, 7] and k of 17, return true since 10 + 7 is 17.
This is what I came up with:
def anyequalto(x, y):
for i in x:
if y - i in x:
return True
anyequalto([10, 15, 3, 7], 17)
I was wondering if anyone had any notes or alternatives as I'm very new to Python and programming.
python
python
New contributor
New contributor
edited 20 mins ago
Jamal♦
30.2k11115226
30.2k11115226
New contributor
asked 12 hours ago
SimonJ
362
362
New contributor
New contributor
Your revised code is actually less efficient. There is no point in creating a new list each time.
– Solomon Ucko
9 hours ago
This puzzle must be making the rounds, because someone posted it on this site a few days ago: codereview.stackexchange.com/questions/208138/…
– Eric Lippert
7 hours ago
4
Please do not add new code to your question. Your new code has a few aspects that deserve to be reviewed. You can do so in a different follow-up question. Please refer to the rules for that.
– Josay
7 hours ago
1
Your revised code doesn't work correctly with duplicate values. contains_pair_totalling([5, 5], 10) returns false. Sets don't contain duplicates, so your remove call breaks this case.
– jaxad0127
7 hours ago
1
The original code didn’t work with the sum double any list value, either.anyequalto([5], 10)
returnsTrue
!
– AJNeufeld
7 hours ago
|
show 1 more comment
Your revised code is actually less efficient. There is no point in creating a new list each time.
– Solomon Ucko
9 hours ago
This puzzle must be making the rounds, because someone posted it on this site a few days ago: codereview.stackexchange.com/questions/208138/…
– Eric Lippert
7 hours ago
4
Please do not add new code to your question. Your new code has a few aspects that deserve to be reviewed. You can do so in a different follow-up question. Please refer to the rules for that.
– Josay
7 hours ago
1
Your revised code doesn't work correctly with duplicate values. contains_pair_totalling([5, 5], 10) returns false. Sets don't contain duplicates, so your remove call breaks this case.
– jaxad0127
7 hours ago
1
The original code didn’t work with the sum double any list value, either.anyequalto([5], 10)
returnsTrue
!
– AJNeufeld
7 hours ago
Your revised code is actually less efficient. There is no point in creating a new list each time.
– Solomon Ucko
9 hours ago
Your revised code is actually less efficient. There is no point in creating a new list each time.
– Solomon Ucko
9 hours ago
This puzzle must be making the rounds, because someone posted it on this site a few days ago: codereview.stackexchange.com/questions/208138/…
– Eric Lippert
7 hours ago
This puzzle must be making the rounds, because someone posted it on this site a few days ago: codereview.stackexchange.com/questions/208138/…
– Eric Lippert
7 hours ago
4
4
Please do not add new code to your question. Your new code has a few aspects that deserve to be reviewed. You can do so in a different follow-up question. Please refer to the rules for that.
– Josay
7 hours ago
Please do not add new code to your question. Your new code has a few aspects that deserve to be reviewed. You can do so in a different follow-up question. Please refer to the rules for that.
– Josay
7 hours ago
1
1
Your revised code doesn't work correctly with duplicate values. contains_pair_totalling([5, 5], 10) returns false. Sets don't contain duplicates, so your remove call breaks this case.
– jaxad0127
7 hours ago
Your revised code doesn't work correctly with duplicate values. contains_pair_totalling([5, 5], 10) returns false. Sets don't contain duplicates, so your remove call breaks this case.
– jaxad0127
7 hours ago
1
1
The original code didn’t work with the sum double any list value, either.
anyequalto([5], 10)
returns True
!– AJNeufeld
7 hours ago
The original code didn’t work with the sum double any list value, either.
anyequalto([5], 10)
returns True
!– AJNeufeld
7 hours ago
|
show 1 more comment
5 Answers
5
active
oldest
votes
up vote
7
down vote
Return value
Adding a few tests, we have:
print(anyequalto([10, 15, 3, 7], 17))
print(anyequalto([10, 15, 3, 7], 18))
print(anyequalto([10, 15, 3, 7], 19))
giving
True
True
None
The None
value seems a bit unexpected to me. We'd probably want False
to be returned in that particular case.
Also, even if you expect None
to be returned in that case, the Python Style Guide recommends being explicit for that (emphasis is mine):
Be consistent in return statements. Either all return statements in a
function should return an expression, or none of them should. If any
return statement returns an expression, any return statements where no
value is returned should explicitly state this as return None, and an
explicit return statement should be present at the end of the function
(if reachable).
Names, documentation and tests
The variables names could be clearer.
Also, the function behavior can be described in a docstring.
Finally, it could be worth writing tests for it.
You'd get something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
for i in num_lst:
if n - i in num_lst:
return True
return False
TESTS = [
# Random tests cases
([10, 15, 3, 7], 17, True),
([10, 15, 3, 7], 18, True),
([10, 15, 3, 7], 19, False),
# Edge case
(, 0, False),
(, 1, False),
# Same value
([5, 5], 10, True),
([5], 10, True),
# Zero
([5, 0], 0, True),
([5, 0], 5, True),
([5, 0], 2, False),
]
for (lst, n, expected_res) in TESTS:
res = anyequalto(lst, n)
if res != expected_res:
print("Error with ", lst, n, "got", res, "expected", expected_res)
Data structure
At the moment, you can iterate on the list (via the in
check) for each element of the list. This leads to an O(n²)
behavior.
You can makes t hings more efficient by building a set to perform the in
test in constant time and have an overall O(n)
behavior.
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
for i in num_set:
if n - i in num_set:
return True
return False
Using the Python toolbox
The solution you are using could be written in a more concise and efficient way using the all
or any
builtin.
You have something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
return any(n - i in num_set for i in num_set)
The any builtin is something I hadn't seen yet. Since someone pointed out that if the value of n is the exact double of an item in num_lst. How would that work out with any? If possible.
– SimonJ
11 hours ago
add a comment |
up vote
4
down vote
There's a failing case you might have missed. If the target number is exactly twice the value of one of the entries, then you'll wrongly return true.
Test case:
anyequalto([5], 10)
Besides that, try to think of a better name for the function. Perhaps contains_pair_totalling()
as a start?
Didn't think of that. I'd fix this by taking the number it's checking out of the list, then checking it and adding it back for the next run. Any thoughts?
– SimonJ
11 hours ago
add a comment |
up vote
2
down vote
for a much faster way to check if a number is in some container, use a
set()
:
anyequalto({10, 15, 3, 7}, 17)
. even if you have to convert from a list first,
it will still be faster to do that once rather than linearly search the list each
iteration. This will make your function O(n) rather than O(n^2)choose more expressive variable names that
x
andy
. something like
numbers
andk
j
If you want to write this in a more functional style, you could do:
def anyequalto(numbers, k):
numbers = set(numbers)
return any((k-num) in numbers
for num in numbers)
Because any will terminate early if the generator produces a true
value, this will be very similar in speed to an iterative solution.
1
It should beany(k in numbers for num in numbers)
, notany(for num in numbers k in numbers)
.
– Graipher
11 hours ago
Actually, I think it needs to beany((k-num) in numbers for num in numbers)
– Toby Speight
11 hours ago
add a comment |
up vote
0
down vote
Here's a fix to the edge case. We want to check explicitly that we have a valid solution, which means that we want something akin to any2
instead of any
(since if we have just a single match then we have the problem case).
def anyequalto(numbers, k):
number_set = set(numbers)
solutions = [num for num in numbers
if k - num in number_set]
return len(solutions) > 1
This fixes the edge case and still retains O(n)
runtime since it uses a set
.
>>> anyequalto([5], 10)
False
Aside
Right now this produces a list with the list comprehension used to generate solutions
which one might argue is needlessly inefficient. I couldn't think of a stylistically good way to assert that a generator has more than one element aside from checking for StopIteration
which I think is kinda clunky.
New contributor
next(iterator, sentinel)
will returnsentinel
if the iterator is exhausted.
– spectras
2 hours ago
add a comment |
up vote
0
down vote
A simple solution would use any
and itertools.combinations
from itertools import combinations
def anytwoequalto(numbers, k):
return any(((i + j) == k) for i, j in combinations(numbers, 2))
itertools.combinations
iterates over the given object returning tuples with the given number of items in them with no repetitions. eg.
combinations('ABCD', 2) =>
(('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D'))
any
returns True
if any of the expressions ((i + j) == k)
evaluate to True
If you wish to consider that an item can be added to itself, use combinations_with_replacement
instead.
Note: depending on the version of Python you are using, you may need to add extra parentheses (()
) around the expression inside the any
call.
Hope this makes sense.
New contributor
add a comment |
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
7
down vote
Return value
Adding a few tests, we have:
print(anyequalto([10, 15, 3, 7], 17))
print(anyequalto([10, 15, 3, 7], 18))
print(anyequalto([10, 15, 3, 7], 19))
giving
True
True
None
The None
value seems a bit unexpected to me. We'd probably want False
to be returned in that particular case.
Also, even if you expect None
to be returned in that case, the Python Style Guide recommends being explicit for that (emphasis is mine):
Be consistent in return statements. Either all return statements in a
function should return an expression, or none of them should. If any
return statement returns an expression, any return statements where no
value is returned should explicitly state this as return None, and an
explicit return statement should be present at the end of the function
(if reachable).
Names, documentation and tests
The variables names could be clearer.
Also, the function behavior can be described in a docstring.
Finally, it could be worth writing tests for it.
You'd get something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
for i in num_lst:
if n - i in num_lst:
return True
return False
TESTS = [
# Random tests cases
([10, 15, 3, 7], 17, True),
([10, 15, 3, 7], 18, True),
([10, 15, 3, 7], 19, False),
# Edge case
(, 0, False),
(, 1, False),
# Same value
([5, 5], 10, True),
([5], 10, True),
# Zero
([5, 0], 0, True),
([5, 0], 5, True),
([5, 0], 2, False),
]
for (lst, n, expected_res) in TESTS:
res = anyequalto(lst, n)
if res != expected_res:
print("Error with ", lst, n, "got", res, "expected", expected_res)
Data structure
At the moment, you can iterate on the list (via the in
check) for each element of the list. This leads to an O(n²)
behavior.
You can makes t hings more efficient by building a set to perform the in
test in constant time and have an overall O(n)
behavior.
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
for i in num_set:
if n - i in num_set:
return True
return False
Using the Python toolbox
The solution you are using could be written in a more concise and efficient way using the all
or any
builtin.
You have something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
return any(n - i in num_set for i in num_set)
The any builtin is something I hadn't seen yet. Since someone pointed out that if the value of n is the exact double of an item in num_lst. How would that work out with any? If possible.
– SimonJ
11 hours ago
add a comment |
up vote
7
down vote
Return value
Adding a few tests, we have:
print(anyequalto([10, 15, 3, 7], 17))
print(anyequalto([10, 15, 3, 7], 18))
print(anyequalto([10, 15, 3, 7], 19))
giving
True
True
None
The None
value seems a bit unexpected to me. We'd probably want False
to be returned in that particular case.
Also, even if you expect None
to be returned in that case, the Python Style Guide recommends being explicit for that (emphasis is mine):
Be consistent in return statements. Either all return statements in a
function should return an expression, or none of them should. If any
return statement returns an expression, any return statements where no
value is returned should explicitly state this as return None, and an
explicit return statement should be present at the end of the function
(if reachable).
Names, documentation and tests
The variables names could be clearer.
Also, the function behavior can be described in a docstring.
Finally, it could be worth writing tests for it.
You'd get something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
for i in num_lst:
if n - i in num_lst:
return True
return False
TESTS = [
# Random tests cases
([10, 15, 3, 7], 17, True),
([10, 15, 3, 7], 18, True),
([10, 15, 3, 7], 19, False),
# Edge case
(, 0, False),
(, 1, False),
# Same value
([5, 5], 10, True),
([5], 10, True),
# Zero
([5, 0], 0, True),
([5, 0], 5, True),
([5, 0], 2, False),
]
for (lst, n, expected_res) in TESTS:
res = anyequalto(lst, n)
if res != expected_res:
print("Error with ", lst, n, "got", res, "expected", expected_res)
Data structure
At the moment, you can iterate on the list (via the in
check) for each element of the list. This leads to an O(n²)
behavior.
You can makes t hings more efficient by building a set to perform the in
test in constant time and have an overall O(n)
behavior.
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
for i in num_set:
if n - i in num_set:
return True
return False
Using the Python toolbox
The solution you are using could be written in a more concise and efficient way using the all
or any
builtin.
You have something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
return any(n - i in num_set for i in num_set)
The any builtin is something I hadn't seen yet. Since someone pointed out that if the value of n is the exact double of an item in num_lst. How would that work out with any? If possible.
– SimonJ
11 hours ago
add a comment |
up vote
7
down vote
up vote
7
down vote
Return value
Adding a few tests, we have:
print(anyequalto([10, 15, 3, 7], 17))
print(anyequalto([10, 15, 3, 7], 18))
print(anyequalto([10, 15, 3, 7], 19))
giving
True
True
None
The None
value seems a bit unexpected to me. We'd probably want False
to be returned in that particular case.
Also, even if you expect None
to be returned in that case, the Python Style Guide recommends being explicit for that (emphasis is mine):
Be consistent in return statements. Either all return statements in a
function should return an expression, or none of them should. If any
return statement returns an expression, any return statements where no
value is returned should explicitly state this as return None, and an
explicit return statement should be present at the end of the function
(if reachable).
Names, documentation and tests
The variables names could be clearer.
Also, the function behavior can be described in a docstring.
Finally, it could be worth writing tests for it.
You'd get something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
for i in num_lst:
if n - i in num_lst:
return True
return False
TESTS = [
# Random tests cases
([10, 15, 3, 7], 17, True),
([10, 15, 3, 7], 18, True),
([10, 15, 3, 7], 19, False),
# Edge case
(, 0, False),
(, 1, False),
# Same value
([5, 5], 10, True),
([5], 10, True),
# Zero
([5, 0], 0, True),
([5, 0], 5, True),
([5, 0], 2, False),
]
for (lst, n, expected_res) in TESTS:
res = anyequalto(lst, n)
if res != expected_res:
print("Error with ", lst, n, "got", res, "expected", expected_res)
Data structure
At the moment, you can iterate on the list (via the in
check) for each element of the list. This leads to an O(n²)
behavior.
You can makes t hings more efficient by building a set to perform the in
test in constant time and have an overall O(n)
behavior.
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
for i in num_set:
if n - i in num_set:
return True
return False
Using the Python toolbox
The solution you are using could be written in a more concise and efficient way using the all
or any
builtin.
You have something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
return any(n - i in num_set for i in num_set)
Return value
Adding a few tests, we have:
print(anyequalto([10, 15, 3, 7], 17))
print(anyequalto([10, 15, 3, 7], 18))
print(anyequalto([10, 15, 3, 7], 19))
giving
True
True
None
The None
value seems a bit unexpected to me. We'd probably want False
to be returned in that particular case.
Also, even if you expect None
to be returned in that case, the Python Style Guide recommends being explicit for that (emphasis is mine):
Be consistent in return statements. Either all return statements in a
function should return an expression, or none of them should. If any
return statement returns an expression, any return statements where no
value is returned should explicitly state this as return None, and an
explicit return statement should be present at the end of the function
(if reachable).
Names, documentation and tests
The variables names could be clearer.
Also, the function behavior can be described in a docstring.
Finally, it could be worth writing tests for it.
You'd get something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
for i in num_lst:
if n - i in num_lst:
return True
return False
TESTS = [
# Random tests cases
([10, 15, 3, 7], 17, True),
([10, 15, 3, 7], 18, True),
([10, 15, 3, 7], 19, False),
# Edge case
(, 0, False),
(, 1, False),
# Same value
([5, 5], 10, True),
([5], 10, True),
# Zero
([5, 0], 0, True),
([5, 0], 5, True),
([5, 0], 2, False),
]
for (lst, n, expected_res) in TESTS:
res = anyequalto(lst, n)
if res != expected_res:
print("Error with ", lst, n, "got", res, "expected", expected_res)
Data structure
At the moment, you can iterate on the list (via the in
check) for each element of the list. This leads to an O(n²)
behavior.
You can makes t hings more efficient by building a set to perform the in
test in constant time and have an overall O(n)
behavior.
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
for i in num_set:
if n - i in num_set:
return True
return False
Using the Python toolbox
The solution you are using could be written in a more concise and efficient way using the all
or any
builtin.
You have something like:
def anyequalto(num_lst, n):
"""Return True if 2 numbers from `num_lst` add up to n, False otherwise."""
num_set = set(num_lst)
return any(n - i in num_set for i in num_set)
answered 11 hours ago
Josay
24.6k13783
24.6k13783
The any builtin is something I hadn't seen yet. Since someone pointed out that if the value of n is the exact double of an item in num_lst. How would that work out with any? If possible.
– SimonJ
11 hours ago
add a comment |
The any builtin is something I hadn't seen yet. Since someone pointed out that if the value of n is the exact double of an item in num_lst. How would that work out with any? If possible.
– SimonJ
11 hours ago
The any builtin is something I hadn't seen yet. Since someone pointed out that if the value of n is the exact double of an item in num_lst. How would that work out with any? If possible.
– SimonJ
11 hours ago
The any builtin is something I hadn't seen yet. Since someone pointed out that if the value of n is the exact double of an item in num_lst. How would that work out with any? If possible.
– SimonJ
11 hours ago
add a comment |
up vote
4
down vote
There's a failing case you might have missed. If the target number is exactly twice the value of one of the entries, then you'll wrongly return true.
Test case:
anyequalto([5], 10)
Besides that, try to think of a better name for the function. Perhaps contains_pair_totalling()
as a start?
Didn't think of that. I'd fix this by taking the number it's checking out of the list, then checking it and adding it back for the next run. Any thoughts?
– SimonJ
11 hours ago
add a comment |
up vote
4
down vote
There's a failing case you might have missed. If the target number is exactly twice the value of one of the entries, then you'll wrongly return true.
Test case:
anyequalto([5], 10)
Besides that, try to think of a better name for the function. Perhaps contains_pair_totalling()
as a start?
Didn't think of that. I'd fix this by taking the number it's checking out of the list, then checking it and adding it back for the next run. Any thoughts?
– SimonJ
11 hours ago
add a comment |
up vote
4
down vote
up vote
4
down vote
There's a failing case you might have missed. If the target number is exactly twice the value of one of the entries, then you'll wrongly return true.
Test case:
anyequalto([5], 10)
Besides that, try to think of a better name for the function. Perhaps contains_pair_totalling()
as a start?
There's a failing case you might have missed. If the target number is exactly twice the value of one of the entries, then you'll wrongly return true.
Test case:
anyequalto([5], 10)
Besides that, try to think of a better name for the function. Perhaps contains_pair_totalling()
as a start?
answered 11 hours ago
Toby Speight
22.7k537109
22.7k537109
Didn't think of that. I'd fix this by taking the number it's checking out of the list, then checking it and adding it back for the next run. Any thoughts?
– SimonJ
11 hours ago
add a comment |
Didn't think of that. I'd fix this by taking the number it's checking out of the list, then checking it and adding it back for the next run. Any thoughts?
– SimonJ
11 hours ago
Didn't think of that. I'd fix this by taking the number it's checking out of the list, then checking it and adding it back for the next run. Any thoughts?
– SimonJ
11 hours ago
Didn't think of that. I'd fix this by taking the number it's checking out of the list, then checking it and adding it back for the next run. Any thoughts?
– SimonJ
11 hours ago
add a comment |
up vote
2
down vote
for a much faster way to check if a number is in some container, use a
set()
:
anyequalto({10, 15, 3, 7}, 17)
. even if you have to convert from a list first,
it will still be faster to do that once rather than linearly search the list each
iteration. This will make your function O(n) rather than O(n^2)choose more expressive variable names that
x
andy
. something like
numbers
andk
j
If you want to write this in a more functional style, you could do:
def anyequalto(numbers, k):
numbers = set(numbers)
return any((k-num) in numbers
for num in numbers)
Because any will terminate early if the generator produces a true
value, this will be very similar in speed to an iterative solution.
1
It should beany(k in numbers for num in numbers)
, notany(for num in numbers k in numbers)
.
– Graipher
11 hours ago
Actually, I think it needs to beany((k-num) in numbers for num in numbers)
– Toby Speight
11 hours ago
add a comment |
up vote
2
down vote
for a much faster way to check if a number is in some container, use a
set()
:
anyequalto({10, 15, 3, 7}, 17)
. even if you have to convert from a list first,
it will still be faster to do that once rather than linearly search the list each
iteration. This will make your function O(n) rather than O(n^2)choose more expressive variable names that
x
andy
. something like
numbers
andk
j
If you want to write this in a more functional style, you could do:
def anyequalto(numbers, k):
numbers = set(numbers)
return any((k-num) in numbers
for num in numbers)
Because any will terminate early if the generator produces a true
value, this will be very similar in speed to an iterative solution.
1
It should beany(k in numbers for num in numbers)
, notany(for num in numbers k in numbers)
.
– Graipher
11 hours ago
Actually, I think it needs to beany((k-num) in numbers for num in numbers)
– Toby Speight
11 hours ago
add a comment |
up vote
2
down vote
up vote
2
down vote
for a much faster way to check if a number is in some container, use a
set()
:
anyequalto({10, 15, 3, 7}, 17)
. even if you have to convert from a list first,
it will still be faster to do that once rather than linearly search the list each
iteration. This will make your function O(n) rather than O(n^2)choose more expressive variable names that
x
andy
. something like
numbers
andk
j
If you want to write this in a more functional style, you could do:
def anyequalto(numbers, k):
numbers = set(numbers)
return any((k-num) in numbers
for num in numbers)
Because any will terminate early if the generator produces a true
value, this will be very similar in speed to an iterative solution.
for a much faster way to check if a number is in some container, use a
set()
:
anyequalto({10, 15, 3, 7}, 17)
. even if you have to convert from a list first,
it will still be faster to do that once rather than linearly search the list each
iteration. This will make your function O(n) rather than O(n^2)choose more expressive variable names that
x
andy
. something like
numbers
andk
j
If you want to write this in a more functional style, you could do:
def anyequalto(numbers, k):
numbers = set(numbers)
return any((k-num) in numbers
for num in numbers)
Because any will terminate early if the generator produces a true
value, this will be very similar in speed to an iterative solution.
edited 10 hours ago
answered 11 hours ago
Peter
70212
70212
1
It should beany(k in numbers for num in numbers)
, notany(for num in numbers k in numbers)
.
– Graipher
11 hours ago
Actually, I think it needs to beany((k-num) in numbers for num in numbers)
– Toby Speight
11 hours ago
add a comment |
1
It should beany(k in numbers for num in numbers)
, notany(for num in numbers k in numbers)
.
– Graipher
11 hours ago
Actually, I think it needs to beany((k-num) in numbers for num in numbers)
– Toby Speight
11 hours ago
1
1
It should be
any(k in numbers for num in numbers)
, not any(for num in numbers k in numbers)
.– Graipher
11 hours ago
It should be
any(k in numbers for num in numbers)
, not any(for num in numbers k in numbers)
.– Graipher
11 hours ago
Actually, I think it needs to be
any((k-num) in numbers for num in numbers)
– Toby Speight
11 hours ago
Actually, I think it needs to be
any((k-num) in numbers for num in numbers)
– Toby Speight
11 hours ago
add a comment |
up vote
0
down vote
Here's a fix to the edge case. We want to check explicitly that we have a valid solution, which means that we want something akin to any2
instead of any
(since if we have just a single match then we have the problem case).
def anyequalto(numbers, k):
number_set = set(numbers)
solutions = [num for num in numbers
if k - num in number_set]
return len(solutions) > 1
This fixes the edge case and still retains O(n)
runtime since it uses a set
.
>>> anyequalto([5], 10)
False
Aside
Right now this produces a list with the list comprehension used to generate solutions
which one might argue is needlessly inefficient. I couldn't think of a stylistically good way to assert that a generator has more than one element aside from checking for StopIteration
which I think is kinda clunky.
New contributor
next(iterator, sentinel)
will returnsentinel
if the iterator is exhausted.
– spectras
2 hours ago
add a comment |
up vote
0
down vote
Here's a fix to the edge case. We want to check explicitly that we have a valid solution, which means that we want something akin to any2
instead of any
(since if we have just a single match then we have the problem case).
def anyequalto(numbers, k):
number_set = set(numbers)
solutions = [num for num in numbers
if k - num in number_set]
return len(solutions) > 1
This fixes the edge case and still retains O(n)
runtime since it uses a set
.
>>> anyequalto([5], 10)
False
Aside
Right now this produces a list with the list comprehension used to generate solutions
which one might argue is needlessly inefficient. I couldn't think of a stylistically good way to assert that a generator has more than one element aside from checking for StopIteration
which I think is kinda clunky.
New contributor
next(iterator, sentinel)
will returnsentinel
if the iterator is exhausted.
– spectras
2 hours ago
add a comment |
up vote
0
down vote
up vote
0
down vote
Here's a fix to the edge case. We want to check explicitly that we have a valid solution, which means that we want something akin to any2
instead of any
(since if we have just a single match then we have the problem case).
def anyequalto(numbers, k):
number_set = set(numbers)
solutions = [num for num in numbers
if k - num in number_set]
return len(solutions) > 1
This fixes the edge case and still retains O(n)
runtime since it uses a set
.
>>> anyequalto([5], 10)
False
Aside
Right now this produces a list with the list comprehension used to generate solutions
which one might argue is needlessly inefficient. I couldn't think of a stylistically good way to assert that a generator has more than one element aside from checking for StopIteration
which I think is kinda clunky.
New contributor
Here's a fix to the edge case. We want to check explicitly that we have a valid solution, which means that we want something akin to any2
instead of any
(since if we have just a single match then we have the problem case).
def anyequalto(numbers, k):
number_set = set(numbers)
solutions = [num for num in numbers
if k - num in number_set]
return len(solutions) > 1
This fixes the edge case and still retains O(n)
runtime since it uses a set
.
>>> anyequalto([5], 10)
False
Aside
Right now this produces a list with the list comprehension used to generate solutions
which one might argue is needlessly inefficient. I couldn't think of a stylistically good way to assert that a generator has more than one element aside from checking for StopIteration
which I think is kinda clunky.
New contributor
New contributor
answered 10 hours ago
cole
2214
2214
New contributor
New contributor
next(iterator, sentinel)
will returnsentinel
if the iterator is exhausted.
– spectras
2 hours ago
add a comment |
next(iterator, sentinel)
will returnsentinel
if the iterator is exhausted.
– spectras
2 hours ago
next(iterator, sentinel)
will return sentinel
if the iterator is exhausted.– spectras
2 hours ago
next(iterator, sentinel)
will return sentinel
if the iterator is exhausted.– spectras
2 hours ago
add a comment |
up vote
0
down vote
A simple solution would use any
and itertools.combinations
from itertools import combinations
def anytwoequalto(numbers, k):
return any(((i + j) == k) for i, j in combinations(numbers, 2))
itertools.combinations
iterates over the given object returning tuples with the given number of items in them with no repetitions. eg.
combinations('ABCD', 2) =>
(('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D'))
any
returns True
if any of the expressions ((i + j) == k)
evaluate to True
If you wish to consider that an item can be added to itself, use combinations_with_replacement
instead.
Note: depending on the version of Python you are using, you may need to add extra parentheses (()
) around the expression inside the any
call.
Hope this makes sense.
New contributor
add a comment |
up vote
0
down vote
A simple solution would use any
and itertools.combinations
from itertools import combinations
def anytwoequalto(numbers, k):
return any(((i + j) == k) for i, j in combinations(numbers, 2))
itertools.combinations
iterates over the given object returning tuples with the given number of items in them with no repetitions. eg.
combinations('ABCD', 2) =>
(('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D'))
any
returns True
if any of the expressions ((i + j) == k)
evaluate to True
If you wish to consider that an item can be added to itself, use combinations_with_replacement
instead.
Note: depending on the version of Python you are using, you may need to add extra parentheses (()
) around the expression inside the any
call.
Hope this makes sense.
New contributor
add a comment |
up vote
0
down vote
up vote
0
down vote
A simple solution would use any
and itertools.combinations
from itertools import combinations
def anytwoequalto(numbers, k):
return any(((i + j) == k) for i, j in combinations(numbers, 2))
itertools.combinations
iterates over the given object returning tuples with the given number of items in them with no repetitions. eg.
combinations('ABCD', 2) =>
(('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D'))
any
returns True
if any of the expressions ((i + j) == k)
evaluate to True
If you wish to consider that an item can be added to itself, use combinations_with_replacement
instead.
Note: depending on the version of Python you are using, you may need to add extra parentheses (()
) around the expression inside the any
call.
Hope this makes sense.
New contributor
A simple solution would use any
and itertools.combinations
from itertools import combinations
def anytwoequalto(numbers, k):
return any(((i + j) == k) for i, j in combinations(numbers, 2))
itertools.combinations
iterates over the given object returning tuples with the given number of items in them with no repetitions. eg.
combinations('ABCD', 2) =>
(('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D'))
any
returns True
if any of the expressions ((i + j) == k)
evaluate to True
If you wish to consider that an item can be added to itself, use combinations_with_replacement
instead.
Note: depending on the version of Python you are using, you may need to add extra parentheses (()
) around the expression inside the any
call.
Hope this makes sense.
New contributor
New contributor
answered 52 mins ago
Ben Jaguar Marshall
1011
1011
New contributor
New contributor
add a comment |
add a comment |
SimonJ is a new contributor. Be nice, and check out our Code of Conduct.
SimonJ is a new contributor. Be nice, and check out our Code of Conduct.
SimonJ is a new contributor. Be nice, and check out our Code of Conduct.
SimonJ is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f208944%2fif-any-two-items-in-a-list-is-equal-to-a-given-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Your revised code is actually less efficient. There is no point in creating a new list each time.
– Solomon Ucko
9 hours ago
This puzzle must be making the rounds, because someone posted it on this site a few days ago: codereview.stackexchange.com/questions/208138/…
– Eric Lippert
7 hours ago
4
Please do not add new code to your question. Your new code has a few aspects that deserve to be reviewed. You can do so in a different follow-up question. Please refer to the rules for that.
– Josay
7 hours ago
1
Your revised code doesn't work correctly with duplicate values. contains_pair_totalling([5, 5], 10) returns false. Sets don't contain duplicates, so your remove call breaks this case.
– jaxad0127
7 hours ago
1
The original code didn’t work with the sum double any list value, either.
anyequalto([5], 10)
returnsTrue
!– AJNeufeld
7 hours ago