Generate this sequence more efficiently
$begingroup$
Is there a more effecient way to generate the sequence shown below.
createOrder[n_] :=
Which[OddQ[n],
Join[Table[2 i - 1, {i, 1, (n + 1)/2}],Reverse@Table[2 i, {i, 1, (n + 1)/2}]],
EvenQ[n],
Join[Table[2 i - 1, {i, 1, n/2 + 1}],Reverse@Table[2 i, {i, 1, n/2}]]]
createOrder[#] & /@ Range[8] // MatrixForm
table sequence
$endgroup$
add a comment |
$begingroup$
Is there a more effecient way to generate the sequence shown below.
createOrder[n_] :=
Which[OddQ[n],
Join[Table[2 i - 1, {i, 1, (n + 1)/2}],Reverse@Table[2 i, {i, 1, (n + 1)/2}]],
EvenQ[n],
Join[Table[2 i - 1, {i, 1, n/2 + 1}],Reverse@Table[2 i, {i, 1, n/2}]]]
createOrder[#] & /@ Range[8] // MatrixForm
table sequence
$endgroup$
add a comment |
$begingroup$
Is there a more effecient way to generate the sequence shown below.
createOrder[n_] :=
Which[OddQ[n],
Join[Table[2 i - 1, {i, 1, (n + 1)/2}],Reverse@Table[2 i, {i, 1, (n + 1)/2}]],
EvenQ[n],
Join[Table[2 i - 1, {i, 1, n/2 + 1}],Reverse@Table[2 i, {i, 1, n/2}]]]
createOrder[#] & /@ Range[8] // MatrixForm
table sequence
$endgroup$
Is there a more effecient way to generate the sequence shown below.
createOrder[n_] :=
Which[OddQ[n],
Join[Table[2 i - 1, {i, 1, (n + 1)/2}],Reverse@Table[2 i, {i, 1, (n + 1)/2}]],
EvenQ[n],
Join[Table[2 i - 1, {i, 1, n/2 + 1}],Reverse@Table[2 i, {i, 1, n/2}]]]
createOrder[#] & /@ Range[8] // MatrixForm
table sequence
table sequence
asked 45 mins ago
Hubble07Hubble07
2,971721
2,971721
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
TeXForm @ MatrixForm @ f[8]
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
end{array}
right)$
$endgroup$
add a comment |
$begingroup$
fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest
fGetList[10]
$
left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
another version
fGetList2[n_?IntegerQ] :=
Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]
fGetList2[10]//TeXForm
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189729%2fgenerate-this-sequence-more-efficiently%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
TeXForm @ MatrixForm @ f[8]
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
end{array}
right)$
$endgroup$
add a comment |
$begingroup$
f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
TeXForm @ MatrixForm @ f[8]
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
end{array}
right)$
$endgroup$
add a comment |
$begingroup$
f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
TeXForm @ MatrixForm @ f[8]
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
end{array}
right)$
$endgroup$
f[n_Integer] := Join[Range[1, #, 2], Reverse[Range[2, #, 2]]] & /@ Range[2, n];
TeXForm @ MatrixForm @ f[8]
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
end{array}
right)$
answered 18 mins ago
kglrkglr
179k9199410
179k9199410
add a comment |
add a comment |
$begingroup$
fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest
fGetList[10]
$
left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
another version
fGetList2[n_?IntegerQ] :=
Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]
fGetList2[10]//TeXForm
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
$endgroup$
add a comment |
$begingroup$
fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest
fGetList[10]
$
left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
another version
fGetList2[n_?IntegerQ] :=
Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]
fGetList2[10]//TeXForm
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
$endgroup$
add a comment |
$begingroup$
fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest
fGetList[10]
$
left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
another version
fGetList2[n_?IntegerQ] :=
Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]
fGetList2[10]//TeXForm
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
$endgroup$
fGetList[n_]:= (Select[Range[#], OddQ]~Join~Reverse@Select[Range[#], EvenQ]) & /@Range[n] // Rest
fGetList[10]
$
left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
another version
fGetList2[n_?IntegerQ] :=
Flatten@MapAt[Reverse, GatherBy[Range[#], OddQ], 2] & /@ Range[2, n]
fGetList2[10]//TeXForm
$left(
begin{array}{c}
{1,2} \
{1,3,2} \
{1,3,4,2} \
{1,3,5,4,2} \
{1,3,5,6,4,2} \
{1,3,5,7,6,4,2} \
{1,3,5,7,8,6,4,2} \
{1,3,5,7,9,8,6,4,2} \
{1,3,5,7,9,10,8,6,4,2} \
end{array}
right)$
edited 6 secs ago
answered 19 mins ago
JerryJerry
939112
939112
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189729%2fgenerate-this-sequence-more-efficiently%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown