Азот
| |||||
Внешний вид простого вещества | |||||
---|---|---|---|---|---|
Жидкий азот. При н. у. — газ без цвета, вкуса и запаха | |||||
Свойства атома | |||||
Название, символ, номер | Азот / Nitrogenium (N), 7 | ||||
Атомная масса (молярная масса) | [14,00643; 14,00728][комм 1][1] а. е. м. (г/моль) | ||||
Электронная конфигурация | [He] 2s2 2p3 | ||||
Радиус атома | 92 пм | ||||
Химические свойства | |||||
Ковалентный радиус | 75 пм | ||||
Радиус иона | 13 (+5e) 171 (−3e) пм | ||||
Электроотрицательность | 3,04[2] (шкала Полинга) | ||||
Степени окисления | 5, 4, 3, 2, 1, 0, −1, −2, −3 | ||||
Энергия ионизации (первый электрон) | 1401,5 (14,53) кДж/моль (эВ) | ||||
Термодинамические свойства простого вещества | |||||
Плотность (при н. у.) | 0,808 г/см³ (-195,8 °C); 1,1649 кг/м³ в стандартных условиях по ГОСТ 2939-63; при н. у. 0,001251 г/см³ | ||||
Температура плавления | 63,29 K (-209,86 °C) | ||||
Температура кипения | 77,4 K (-195,75 °C) | ||||
Уд. теплота плавления | (N2) 0,720 кДж/моль | ||||
Уд. теплота испарения | (N2) 5,57 кДж/моль | ||||
Молярная теплоёмкость | 29,125[3] (газ N2) Дж/(K·моль) | ||||
Молярный объём | 17,3 см³/моль | ||||
Кристаллическая решётка простого вещества | |||||
Структура решётки | кубическая | ||||
Параметры решётки | 5,661 Å | ||||
Прочие характеристики | |||||
Теплопроводность | (300 K) 0,026 Вт/(м·К) | ||||
Номер CAS | 7727-37-9 |
7 | Азот |
N 14,007 | |
2s22p3 |
Азо́т — элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 7. Относится к пниктогенам. Обозначается символом N (лат. Nitrogenium). Простое вещество азот — двухатомный газ без цвета, вкуса и запаха. Один из самых распространённых элементов на Земле. Химически весьма инертен, однако реагирует с комплексными соединениями переходных металлов. Основной компонент воздуха (78,09 % объёма), разделением которого получают промышленный азот (более ¾ идёт на синтез аммиака). Применяется как инертная среда для множества технологических процессов; жидкий азот — хладагент. Азот — один из основных биогенных элементов, входящих в состав белков и нуклеиновых кислот[4].
Содержание
1 История открытия
2 Происхождение названия
3 Азот в природе
3.1 Изотопы
3.2 Распространённость
3.3 Биологическая роль
3.4 Круговорот азота в природе
3.5 Токсикология азота и его соединений
4 Получение
4.1 Разложение нитрита аммония
4.2 Нагревание дихромата калия с сульфатом аммония
4.3 Разложение азидов
4.4 Реакция воздуха с раскалённым коксом
4.5 Перегонка воздуха
4.6 Пропускание аммиака над оксидом меди (II)
5 Свойства
5.1 Физические свойства
5.2 Химические свойства, строение молекулы
5.2.1 Промышленное связывание атмосферного азота
6 Соединения азота
7 Применение
7.1 Газообразный азот
7.2 Жидкий азот
8 Маркировка баллонов
9 Опасность для здоровья
10 Комментарии
11 Примечания
12 Литература
13 Ссылки
История открытия |
В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.
Интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон.
Джозеф Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.
Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.
В 1772 году азот (под названием «испорченного воздуха») как простое вещество описал шотландский химик Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота. Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.
Происхождение названия |
Название «азо́т» (фр. azote, по наиболее распространённой версии, от др.-греч. ἄζωτος — безжизненный), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье, который в то время в составе группы других французских учёных разрабатывал принципы химической номенклатуры, в том же году это предложение опубликовано в труде «Метод химической номенклатуры»[5]. Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках. Окончательно в русском языке этот вариант названия закрепился после выхода в свет книги Германа Гесса «Основания чистой химии» в 1831 году[6].
Существует и иная версия[7]. Слово «азот» придумано не Лавуазье и не его коллегами по номенклатурной комиссии; оно вошло в алхимическую литературу уже в раннем средневековье и употреблялось для обозначения «первичной материи металлов», которую считали «альфой и омегой» всего сущего. Это выражение заимствовано из Апокалипсиса: «Я есмь Альфа и Омега, начало и конец» (Откр. 1:8-10). Слово составлено из начальных и конечных букв алфавитов трёх языков — латинского, греческого и древнееврейского, — считавшихся «священными», поскольку, согласно Евангелиям, надпись на кресте при распятии Христа была сделана на этих языках (а, альфа, алеф и зет, омега, тав — AAAZOTH). Составители новой химической номенклатуры хорошо знали о существовании этого слова; инициатор её создания Гитон де Морво отмечал в своей «Методической энциклопедии» (1786 год) алхимическое значение термина.
Возможно, слово «азот» произошло от одного из двух арабских слов — либо от слова «аз-зат» («сущность» или «внутреннюю реальность»), либо от слова «зибак» («ртуть»).
Название «азот», помимо французского и русского, принято в итальянском, турецком и ряде славянских языков, а также во многих языках народов бывшего СССР.
На латыни азот называется nitrogenium, то есть «рождающий селитру», отсюда символ N. Это название во французской форме nitrogène предложил французский химик Ж. Шапталь в 1790 году в своей книге «Элементы химии»[8], однако во французском языке оно не прижилось, в отличие от многих других языков (в частности, английского, испанского, венгерского, норвежского), где название производно от этого слова. В немецком языке используется название Stickstoff, что означает «удушающее вещество», аналогично в нидерландском; схожие по значению названия используются в некоторых славянских языках (например, хорватское dušik).
Азот в природе |
Изотопы |
Природный азот состоит из двух стабильных изотопов 14N — 99,635 % и 15N — 0,365 %.
Искусственно получены четырнадцать радиоактивных изотопов азота с массовыми числами от 10 до 13 и от 16 до 25. Все они являются очень короткоживущими изотопами. Самый стабильный из них 13N имеет период полураспада 10 мин.
Спин ядер стабильных изотопов азота: 14N — 1; 15N — 1/2.
Распространённость |
Азот — один из самых распространённых элементов на Земле[4]. Вне пределов Земли азот обнаружен в газовых туманностях, солнечной атмосфере, на Уране, Нептуне, межзвёздном пространстве и др. Атмосферы таких планет-спутников как Титан, Тритон, а также карликовой планеты Плутон в основном состоят из азота. Азот — четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода).
Азот в форме двухатомных молекул N2 составляет большую часть атмосферы Земли, где его содержание составляет 75,6 % (по массе) или 78,084 % (по объёму), то есть около 3,87⋅1015 т.
Содержание азота в земной коре, по данным разных авторов, составляет (0,7—1,5)⋅1015 т (причём в гумусе — порядка 6⋅1010 т), а в мантии Земли — 1,3⋅1016 т. Такое соотношение масс заставляет предположить, что главным источником азота служит верхняя часть мантии, откуда он поступает в другие оболочки Земли с извержениями вулканов.
Масса растворённого в гидросфере азота, учитывая, что одновременно происходят процессы растворения азота атмосферы в воде и выделения его в атмосферу, составляет около 2⋅1013 т, кроме того, примерно 7⋅1011 т азота содержатся в гидросфере в виде соединений.
Биологическая роль |
Азот является химическим элементом, необходимым для существования животных и растений, он входит в состав белков (16—18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. В составе живых клеток по числу атомов азота около 2 %, по массовой доле — около 2,5 % (четвёртое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9⋅1011 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия с примесями других соединений), норвежская, индийская селитры.
Круговорот азота в природе |
Фиксация атмосферного азота в природе происходит по двум основным направлениям — абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры). Эти условия достигаются при разрядах молний, когда температура достигает 25000 °C и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь).
Однако основная часть молекулярного азота (около 1,4⋅108 т/год) фиксируется биотическим путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли): бактерии Azotobacter и Clostridium, клубеньковые бактерии бобовых растений Rhizobium, цианобактерии Anabaena, Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубеньках ольхи и других деревьев (всего 160 видов). Все они превращают молекулярный азот в соединения аммония (NH4+). Этот процесс требует значительных затрат энергии (для фиксации 1 г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10 г глюкозы). Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий — первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» — глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.
Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации). Последние, не связанные тканями растений (и далее по пищевой цепи травоядными и хищниками), недолго остаются в почве. Большинство нитратов и нитритов хорошо растворимы, поэтому они смываются водой и, в конце концов, попадают в мировой океан (этот поток оценивается в 2,5—8⋅107 т/год).
Азот, включённый в ткани растений и животных, после их гибели подвергается аммонификации (разложению содержащих азот сложных соединений с выделением аммиака и ионов аммония) и денитрификации, то есть выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.
В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.
Токсикология азота и его соединений |
Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь.
Многие соединения азота очень активны и нередко токсичны.
Получение |
Разложение нитрита аммония |
В лабораториях его можно получать по реакции разложения нитрита аммония:
- NH4NO2→N2↑+2H2O{displaystyle {mathsf {NH_{4}NO_{2}rightarrow N_{2}uparrow +2H_{2}O}}}
Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).
Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.
Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.
Нагревание дихромата калия с сульфатом аммония |
Ещё один лабораторный способ получения азота — нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:
- K2Cr2O7+(NH4)2SO4→(NH4)2Cr2O7+K2SO4{displaystyle {mathsf {K_{2}Cr_{2}O_{7}+(NH_{4})_{2}SO_{4}rightarrow (NH_{4})_{2}Cr_{2}O_{7}+K_{2}SO_{4}}}}
- (NH4)2Cr2O7→N2↑+Cr2O3+4H2O{displaystyle {mathsf {(NH_{4})_{2}Cr_{2}O_{7}rightarrow N_{2}uparrow +Cr_{2}O_{3}+4H_{2}O}}}
Разложение азидов |
Наиболее чистый азот можно получить разложением азидов металлов:
- 2NaN3 →ot 2Na+3N2↑{displaystyle {mathsf {2NaN_{3} {xrightarrow[{}]{^{o}t}} 2Na+3N_{2}uparrow }}}
Реакция воздуха с раскалённым коксом |
Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом, при этом образуется так называемый «генераторный», или «воздушный», газ — сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.
Перегонка воздуха |
Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.
Пропускание аммиака над оксидом меди (II) |
Один из лабораторных способов — пропускание аммиака над оксидом меди (II) при температуре ~700 °C:
- 3CuO+2NH3→N2↑+3Cu+3H2O{displaystyle {mathsf {3CuO+2NH_{3}rightarrow N_{2}uparrow +3Cu+3H_{2}O}}}
Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700 °C), затем сушат концентрированной серной кислотой и сухой щёлочью.
Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.
Свойства |
Физические свойства |
При нормальных условиях азот — это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100 г при 0 °C, 1,5 мл/100 г при 20 °C, 1,1 мл/100 г при 40 °C, 0,5 мл/100 г при 80 °C[9]), плотность 1,2506 кг/м³ (при н. у.).
В жидком состоянии (темп. кипения -195,8 °C) — бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.
При -209,86 °C азот переходит в твёрдое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.
Известны три кристаллические модификации твёрдого азота. В интервале 36,61 — 63,29 К существует фаза β-N2 с гексагональной плотной упаковкой, пространственная группа P63/mmc, параметры решётки a=3,93 Å и c=6,50 Å. При температуре ниже 36,61 К устойчива фаза α-N2 с кубической решёткой, имеющая пространственную группу Pa3 или P213 и период a=5,660 Å. Под давлением более 3500 атмосфер и температуре ниже 83 K образуется гексагональная фаза γ-N2.
Химические свойства, строение молекулы |
Азот в свободном состоянии существует в форме двухатомных молекул N2, электронная конфигурация которых описывается формулой σs²σs*2πx, y4σz², что соответствует тройной связи между атомами азота N≡N (длина связи dN≡N = 0,1095 нм). Вследствие этого молекула азота крайне прочна, для реакции диссоциации N2 ↔ 2N изменение энтальпии в реакции ΔH°298=945 кДж/моль[10], константа скорости реакции К298=10−120, то есть диссоциация молекул азота при нормальных условиях практически не происходит (равновесие практически полностью сдвинуто влево). Молекула азота неполярна и слабо поляризуется, силы взаимодействия между молекулами очень слабые, поэтому в обычных условиях азот газообразен.
Даже при 3000 °C степень термической диссоциации N2 составляет всего 0,1 %, и лишь при температуре около 5000 °C достигает нескольких процентов (при нормальном давлении). В высоких слоях атмосферы происходит фотохимическая диссоциация молекул N2. В лабораторных условиях можно получить атомарный азот, пропуская газообразный N2 при сильном разрежении через поле высокочастотного электрического разряда. Атомарный азот намного активнее молекулярного: в частности, при обычной температуре он реагирует с серой, фосфором, мышьяком и с рядом металлов, например, со ртутью.
Вследствие большой прочности молекулы азота некоторые его соединения эндотермичны (многие галогениды, азиды, оксиды), то есть энтальпия их образования положительна, а соединения азота термически малоустойчивы и довольно легко разлагаются при нагревании. Именно поэтому азот на Земле находится по большей части в свободном состоянии.
Ввиду своей значительной инертности азот при обычных условиях реагирует только с литием:
- 6Li+N2→2Li3N{displaystyle {mathsf {6Li+N_{2}rightarrow 2Li_{3}N}}}
при нагревании он реагирует с некоторыми другими металлами и неметаллами, также образуя нитриды:
- 3Mg+N2→Mg3N2{displaystyle {mathsf {3Mg+N_{2}rightarrow Mg_{3}N_{2}}}}
- 2B+N2→2BN{displaystyle {mathsf {2B+N_{2}rightarrow 2BN}}}
Наибольшее практическое значение имеет нитрид водорода (аммиак) NH3, получаемый взаимодействием водорода с азотом (см. ниже).
В электрическом разряде реагирует с кислородом, образуя оксид азота(II) NO.
Описано несколько десятков комплексов с молекулярным азотом.
Промышленное связывание атмосферного азота |
Соединения азота чрезвычайно широко используются в химии, невозможно даже перечислить все области, где находят применение вещества, содержащие азот: это индустрия удобрений, взрывчатых веществ, красителей, медикаментов и проч. Хотя колоссальные количества азота доступны в прямом смысле слова «из воздуха», из-за описанной выше прочности молекулы азота N2 долгое время оставалась нерешённой задача получения соединений, содержащих азот, из воздуха; большая часть соединений азота добывалась из его минералов, таких, как чилийская селитра. Однако сокращение запасов этих полезных ископаемых, а также рост потребности в соединениях азота заставил форсировать работы по промышленному связыванию атмосферного азота.
Наиболее распространён аммиачный способ связывания атмосферного азота. Обратимая реакция синтеза аммиака:
- N2+3H2⇄2NH3{displaystyle {mathsf {N_{2}+3H_{2}rightleftarrows 2NH_{3}}}}
экзотермическая (тепловой эффект 92 кДж) и идёт с уменьшением объёма, поэтому для сдвига равновесия вправо в соответствии с принципом Ле Шателье — Брауна необходимо охлаждение смеси и высокие давления. Однако с кинетической точки зрения снижение температуры невыгодно, так как при этом сильно снижается скорость реакции — уже при 700 °C скорость реакции слишком мала для её практического использования.
В таких случаях используется катализ, так как подходящий катализатор позволяет увеличить скорость реакции без сдвига равновесия. В процессе поиска подходящего катализатора было испробовано около двадцати тысяч различных соединений. По совокупности свойств (каталитическая активность, стойкость к отравлению, дешевизна) наибольшее применение получил катализатор на основе металлического железа с примесями оксидов алюминия и калия. Процесс ведут при температуре 400—600 °C и давлениях 10—1000 атмосфер.
Следует отметить, что при давлениях выше 2000 атмосфер синтез аммиака из смеси водорода и азота идёт с высокой скоростью и без катализатора. Например, при 850 °C и 4500 атмосфер выход продукта составляет 97 %.
Существует и ещё один, менее распространённый способ промышленного связывания атмосферного азота — цианамидный метод, основанный на реакции карбида кальция с азотом при 1000 °C. Реакция происходит по уравнению:
- CaC2+N2→CaCN2+C{displaystyle {mathsf {CaC_{2}+N_{2}rightarrow CaCN_{2}+C}}}
Реакция экзотермична, её тепловой эффект 293 кДж.
Ежегодно из атмосферы Земли промышленным путём отбирается примерно 1⋅106 т азота.
Соединения азота |
Степени окисления азота в соединениях −3, −2, −1, 0, +1, +2, +3, +4, +5.
Соединения азота в степени окисления −3 представлены нитридами, из которых практически наиболее важен аммиак;
Соединения азота в степени окисления −2 менее характерны, представлены пернитридами, из которых самый важный пернитрид водорода N2H4 или гидразин (существует также крайне неустойчивый пернитрид водорода N2H2, диимид);
Соединения азота в степени окисления −1 NH2OH (гидроксиламин) — неустойчивое основание, применяющееся, наряду с солями гидроксиламмония, в органическом синтезе;
Соединения азота в степени окисления +1 оксид азота(I) N2O (закись азота, веселящий газ);
Соединения азота в степени окисления +2 оксид азота(II) NO (монооксид азота);
Соединения азота в степени окисления +3 оксид азота(III) N2O3 (сесквиоксид азота, триоксид диазота), азотистая кислота, производные аниона NO2−, трифторид азота (NF3);
Соединения азота в степени окисления +4 оксид азота(IV) NO2 (диоксид азота, бурый газ);
Соединения азота в степени окисления +5 оксид азота(V) N2O5 (пентаоксид диазота), азотная кислота, её соли — нитраты и другие производные, а также тетрафтораммоний NF4+ и его соли.
Применение |
Газообразный азот |
Промышленное применение газообразного азота обусловлено его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению. В нефтедобывающей промышленности газообразный азот применяется для обеспечения безопасного бурения, используется в процессе капитального и текущего ремонта скважин. Кроме того, газообразный азот высокого давления используют в газовых методах повышения нефтеотдачи пласта. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы, тушения эндогенных пожаров. В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.
Газообразным азотом заполняют камеры шин шасси летательных аппаратов. Кроме того, в последнее время заполнение шин азотом стало популярно и среди автолюбителей, хотя однозначных доказательств эффективности использования азота вместо воздуха для наполнения автомобильных шин нет.
Жидкий азот |
Жидкий азот применяется как хладагент и для криотерапии.
Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот, таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Более ¾ промышленного азота идёт на синтез аммиака.[4]
Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.
В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент, а жидкий азот применяется при разливе масел и негазированных напитков для создания избыточного давления и инертной среды в мягкой таре.
Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённое заблуждение. Даже для замораживания цветка необходимо достаточно продолжительное время. Это связано отчасти с весьма низкой теплоёмкостью азота. По этой же причине весьма затруднительно охлаждать, скажем, замки до −196 °C и раскалывать их одним ударом.
Литр жидкого азота, испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине жидкий азот хранят в специальных сосудах Дьюара с вакуумной изоляцией открытого типа или криогенных ёмкостях под давлением. На этом же факте основан принцип тушения пожаров жидким азотом. Испаряясь, азот вытесняет кислород, необходимый для горения, и пожар прекращается. Так как азот, в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров.
Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом, в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота.
В качестве легирующей добавки к кремнию, образует высокопрочное соединение (керамику) нитрид кремния, обладающее высокой вязкостью и прочностью.
Маркировка баллонов |
Баллоны с азотом окрашены в чёрный цвет, должны иметь надпись жёлтого цвета и коричневую полосу (согласно ПБ 03-576-03), при этом ГОСТ 26460-85 не требует полосы, но надпись должна содержать сведения о чистоте азота (особой чистоты, высокой чистоты, повышенной чистоты)[источник не указан 2041 день].
Опасность для здоровья |
В обычных условиях азот не представляет угрозы для здоровья, однако и он способен в некоторых случаях вызывать азотное отравление.
Азот относится ко 2-му классу опасности. Рейтинг NFPA 704: Опасность для здоровья: 3, огнеопасность: 0, реакционная способность: 0.
Комментарии |
↑ Указан диапазон значений атомной массы в связи с неоднородностью распространения изотопов в природе.
Примечания |
↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
↑ Nitrogen: electronegativities (англ.). WebElements. Проверено 5 августа 2010.
↑ Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 58. — 623 с. — 100 000 экз.
↑ 123 Азот // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2004. — Т. I. — ISBN 9965-9389-9-7.
↑ Guyton de Morveau L. B., Lavoisier A. L., Berthollet C. L., de Fourcroy A. F. Méthode de nomenclature chimique. — Paris, 1787. — P. 36.
↑ Малина И.К. Безжизненный ли азот? // Книга для чтения по неорганической химии. Пособие для учащихся. Ч. II. — М.: Просвещение, 1975. — С. 42—52.
↑ Фигуровский Н. А. Открытие элементов и происхождение их названий. — М.: Наука, 1970. 207 с.
↑ Chaptal, J.A. Élémens de chimie. — 1790. — Vol. 1. — P. 126.
↑ Справочник по растворимости / Отв. ред. Кафаров В. В.. — М-Л: Издательство Академии наук СССР, 1961. — Т. 1 Кн. 1. — 960 с.
↑ Nitrogen atom
Литература |
- Некрасов Б. В., Основы общей химии, т. 1, М.: «Химия», 1973;
- Химия: Справ. изд./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. 2-е изд., стереотип. — М.: Химия, 2000 ISBN 5-7245-0360-3 (рус.), ISBN 3-343-00208-9 (нем.);
- Ахметов Н. С., Общая и неорганическая химия. 5-е изд., испр. — М.: Высшая школа, 2003 ISBN 5-06-003363-5;
- Гусакова Н. В., Химия окружающей среды. Серия «Высшее образование». Ростов-на-Дону: Феникс, 2004 ISBN 5-222-05386-5;
- Исидоров В. А., Экологическая химия. СПб: Химиздат, 2001 ISBN 5-7245-1068-5;
- Трифонов Д. Н., Трифонов В. Д., Как были открыты химические элементы — М.: Просвещение, 1980
- Справочник химика, 2-е изд., т. 1, М.: «Химия», 1966;
Ссылки |
.mw-parser-output .ts-Родственные_проекты{background:#f8f9fa;border:1px solid #a2a9b1;clear:right;float:right;font-size:90%;margin:0 0 1em 1em;padding:.5em .75em}.mw-parser-output .ts-Родственные_проекты th,.mw-parser-output .ts-Родственные_проекты td{padding:.25em 0;vertical-align:middle}.mw-parser-output .ts-Родственные_проекты td{padding-left:.5em}
Азот на Викискладе |
- Азот, химический элемент // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Азот на Webelements
- Азот в Популярной библиотеке химических элементов