54V 5A DC thru “regular” coax “TV” cable for use as a “poor man's” solar power cable?











up vote
1
down vote

favorite












In the effort of saving money without having to buy expensive solar cables (and because I have a lot of extra coax cable lying around doing nothing), I would like to use a piece of coax cable (that looks like antenna cable), to transfer 54V and up to 5A of solar power into the house. The length would be no more than about 20 feet and can be made even shorter. This is a very small solar application to charge a small 48V battery bank. If I do not know the type of cable (such as RG-6) so that I cannot just look up the specs on it, generally speaking, is it fairly safe to assume just about ANY piece of coax normally used for cable TV or antennas can handle 54V and 5A? I think it is reasonable. Note that I would not use the end "F" connectors, I would use stripped ends to attach to the solar panel cables and somehow weatherproof them, and on the charger (indoor) side, also stripped ends.



I should mention that the near 5A flow would only be in certain conditions (like when the battery bank is in a mid state of charge and there is full sun directly over the panels). I would say on average, the current flow should be more like 2.5A to 3A.










share|improve this question




























    up vote
    1
    down vote

    favorite












    In the effort of saving money without having to buy expensive solar cables (and because I have a lot of extra coax cable lying around doing nothing), I would like to use a piece of coax cable (that looks like antenna cable), to transfer 54V and up to 5A of solar power into the house. The length would be no more than about 20 feet and can be made even shorter. This is a very small solar application to charge a small 48V battery bank. If I do not know the type of cable (such as RG-6) so that I cannot just look up the specs on it, generally speaking, is it fairly safe to assume just about ANY piece of coax normally used for cable TV or antennas can handle 54V and 5A? I think it is reasonable. Note that I would not use the end "F" connectors, I would use stripped ends to attach to the solar panel cables and somehow weatherproof them, and on the charger (indoor) side, also stripped ends.



    I should mention that the near 5A flow would only be in certain conditions (like when the battery bank is in a mid state of charge and there is full sun directly over the panels). I would say on average, the current flow should be more like 2.5A to 3A.










    share|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      In the effort of saving money without having to buy expensive solar cables (and because I have a lot of extra coax cable lying around doing nothing), I would like to use a piece of coax cable (that looks like antenna cable), to transfer 54V and up to 5A of solar power into the house. The length would be no more than about 20 feet and can be made even shorter. This is a very small solar application to charge a small 48V battery bank. If I do not know the type of cable (such as RG-6) so that I cannot just look up the specs on it, generally speaking, is it fairly safe to assume just about ANY piece of coax normally used for cable TV or antennas can handle 54V and 5A? I think it is reasonable. Note that I would not use the end "F" connectors, I would use stripped ends to attach to the solar panel cables and somehow weatherproof them, and on the charger (indoor) side, also stripped ends.



      I should mention that the near 5A flow would only be in certain conditions (like when the battery bank is in a mid state of charge and there is full sun directly over the panels). I would say on average, the current flow should be more like 2.5A to 3A.










      share|improve this question















      In the effort of saving money without having to buy expensive solar cables (and because I have a lot of extra coax cable lying around doing nothing), I would like to use a piece of coax cable (that looks like antenna cable), to transfer 54V and up to 5A of solar power into the house. The length would be no more than about 20 feet and can be made even shorter. This is a very small solar application to charge a small 48V battery bank. If I do not know the type of cable (such as RG-6) so that I cannot just look up the specs on it, generally speaking, is it fairly safe to assume just about ANY piece of coax normally used for cable TV or antennas can handle 54V and 5A? I think it is reasonable. Note that I would not use the end "F" connectors, I would use stripped ends to attach to the solar panel cables and somehow weatherproof them, and on the charger (indoor) side, also stripped ends.



      I should mention that the near 5A flow would only be in certain conditions (like when the battery bank is in a mid state of charge and there is full sun directly over the panels). I would say on average, the current flow should be more like 2.5A to 3A.







      power dc






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 6 mins ago

























      asked 52 mins ago









      David

      1728




      1728






















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote













          I think the 1/4 inch (or so) coax cables (RG59, RG6 etc.) would have too small a center conductor to safely carry 5 Amp, The 0.4 inch cables (RG8 or RG11) should be OK for 5 Amp.






          share|improve this answer




























            up vote
            1
            down vote













            Most coax has a type or part number laser-markes onto the outer jacket at periodic intervals. If not, measure the diameter of the inner conductor and convert to an equivalent AWG. You could also pass 5A through a sample piece in an environment representative of your worst-case thermal situation (e.g. when it's going through a thermally insulating feedthrough) for ~30 mins and see if there's an appreciable temperature rise.






            share|improve this answer




























              up vote
              0
              down vote













              No, you can "not" assume that any "random" coaxial cable can "reliably" carry 5A. Determine what kind of cable you have, then look up its specifications.






              share|improve this answer





















              • What then would be a "safe" way to determine if some unmarked piece of coax cable can handle a continuous (many hours) of 5A load? Is there some industry standard test or should I just try it and feel the cable with my fingers every few minutes? 5A is really not that much. For example, I have seen very tiny wires used on some multi-testers yet they are rated at up to 5A (since there is a 5A setting on the tester). The conductors in an "average" piece of "TV" cable seem significantly thicker than those.
                – David
                25 mins ago













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("schematics", function () {
              StackExchange.schematics.init();
              });
              }, "cicuitlab");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "135"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f410698%2f54v-5a-dc-thru-regular-coax-tv-cable-for-use-as-a-poor-mans-solar-power-c%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              2
              down vote













              I think the 1/4 inch (or so) coax cables (RG59, RG6 etc.) would have too small a center conductor to safely carry 5 Amp, The 0.4 inch cables (RG8 or RG11) should be OK for 5 Amp.






              share|improve this answer

























                up vote
                2
                down vote













                I think the 1/4 inch (or so) coax cables (RG59, RG6 etc.) would have too small a center conductor to safely carry 5 Amp, The 0.4 inch cables (RG8 or RG11) should be OK for 5 Amp.






                share|improve this answer























                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  I think the 1/4 inch (or so) coax cables (RG59, RG6 etc.) would have too small a center conductor to safely carry 5 Amp, The 0.4 inch cables (RG8 or RG11) should be OK for 5 Amp.






                  share|improve this answer












                  I think the 1/4 inch (or so) coax cables (RG59, RG6 etc.) would have too small a center conductor to safely carry 5 Amp, The 0.4 inch cables (RG8 or RG11) should be OK for 5 Amp.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 13 mins ago









                  Peter Bennett

                  36.4k12867




                  36.4k12867
























                      up vote
                      1
                      down vote













                      Most coax has a type or part number laser-markes onto the outer jacket at periodic intervals. If not, measure the diameter of the inner conductor and convert to an equivalent AWG. You could also pass 5A through a sample piece in an environment representative of your worst-case thermal situation (e.g. when it's going through a thermally insulating feedthrough) for ~30 mins and see if there's an appreciable temperature rise.






                      share|improve this answer

























                        up vote
                        1
                        down vote













                        Most coax has a type or part number laser-markes onto the outer jacket at periodic intervals. If not, measure the diameter of the inner conductor and convert to an equivalent AWG. You could also pass 5A through a sample piece in an environment representative of your worst-case thermal situation (e.g. when it's going through a thermally insulating feedthrough) for ~30 mins and see if there's an appreciable temperature rise.






                        share|improve this answer























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          Most coax has a type or part number laser-markes onto the outer jacket at periodic intervals. If not, measure the diameter of the inner conductor and convert to an equivalent AWG. You could also pass 5A through a sample piece in an environment representative of your worst-case thermal situation (e.g. when it's going through a thermally insulating feedthrough) for ~30 mins and see if there's an appreciable temperature rise.






                          share|improve this answer












                          Most coax has a type or part number laser-markes onto the outer jacket at periodic intervals. If not, measure the diameter of the inner conductor and convert to an equivalent AWG. You could also pass 5A through a sample piece in an environment representative of your worst-case thermal situation (e.g. when it's going through a thermally insulating feedthrough) for ~30 mins and see if there's an appreciable temperature rise.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 12 mins ago









                          pericynthion

                          4,002929




                          4,002929






















                              up vote
                              0
                              down vote













                              No, you can "not" assume that any "random" coaxial cable can "reliably" carry 5A. Determine what kind of cable you have, then look up its specifications.






                              share|improve this answer





















                              • What then would be a "safe" way to determine if some unmarked piece of coax cable can handle a continuous (many hours) of 5A load? Is there some industry standard test or should I just try it and feel the cable with my fingers every few minutes? 5A is really not that much. For example, I have seen very tiny wires used on some multi-testers yet they are rated at up to 5A (since there is a 5A setting on the tester). The conductors in an "average" piece of "TV" cable seem significantly thicker than those.
                                – David
                                25 mins ago

















                              up vote
                              0
                              down vote













                              No, you can "not" assume that any "random" coaxial cable can "reliably" carry 5A. Determine what kind of cable you have, then look up its specifications.






                              share|improve this answer





















                              • What then would be a "safe" way to determine if some unmarked piece of coax cable can handle a continuous (many hours) of 5A load? Is there some industry standard test or should I just try it and feel the cable with my fingers every few minutes? 5A is really not that much. For example, I have seen very tiny wires used on some multi-testers yet they are rated at up to 5A (since there is a 5A setting on the tester). The conductors in an "average" piece of "TV" cable seem significantly thicker than those.
                                – David
                                25 mins ago















                              up vote
                              0
                              down vote










                              up vote
                              0
                              down vote









                              No, you can "not" assume that any "random" coaxial cable can "reliably" carry 5A. Determine what kind of cable you have, then look up its specifications.






                              share|improve this answer












                              No, you can "not" assume that any "random" coaxial cable can "reliably" carry 5A. Determine what kind of cable you have, then look up its specifications.







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 43 mins ago









                              Elliot Alderson

                              4,3341918




                              4,3341918












                              • What then would be a "safe" way to determine if some unmarked piece of coax cable can handle a continuous (many hours) of 5A load? Is there some industry standard test or should I just try it and feel the cable with my fingers every few minutes? 5A is really not that much. For example, I have seen very tiny wires used on some multi-testers yet they are rated at up to 5A (since there is a 5A setting on the tester). The conductors in an "average" piece of "TV" cable seem significantly thicker than those.
                                – David
                                25 mins ago




















                              • What then would be a "safe" way to determine if some unmarked piece of coax cable can handle a continuous (many hours) of 5A load? Is there some industry standard test or should I just try it and feel the cable with my fingers every few minutes? 5A is really not that much. For example, I have seen very tiny wires used on some multi-testers yet they are rated at up to 5A (since there is a 5A setting on the tester). The conductors in an "average" piece of "TV" cable seem significantly thicker than those.
                                – David
                                25 mins ago


















                              What then would be a "safe" way to determine if some unmarked piece of coax cable can handle a continuous (many hours) of 5A load? Is there some industry standard test or should I just try it and feel the cable with my fingers every few minutes? 5A is really not that much. For example, I have seen very tiny wires used on some multi-testers yet they are rated at up to 5A (since there is a 5A setting on the tester). The conductors in an "average" piece of "TV" cable seem significantly thicker than those.
                              – David
                              25 mins ago






                              What then would be a "safe" way to determine if some unmarked piece of coax cable can handle a continuous (many hours) of 5A load? Is there some industry standard test or should I just try it and feel the cable with my fingers every few minutes? 5A is really not that much. For example, I have seen very tiny wires used on some multi-testers yet they are rated at up to 5A (since there is a 5A setting on the tester). The conductors in an "average" piece of "TV" cable seem significantly thicker than those.
                              – David
                              25 mins ago




















                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Electrical Engineering Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f410698%2f54v-5a-dc-thru-regular-coax-tv-cable-for-use-as-a-poor-mans-solar-power-c%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Михайлов, Христо

                              Центральная группа войск

                              Троллейбус